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Abstract--Employing a complex variable approach to the equations of motion for an incom- 
pressible viscous fluid and a more general approximation to the convecting stream function it is 
possible to calculate an approximation to the vorticity on the boundary for streaming flow past 
a circular cylinder without solving first for the complete flow field. In particular it is found that 
separation at the rear stagnation point first occurs when R * =  2.78, where R* is the critical 
Reynolds number. This result is in good agreement with the value of R* obtained by experiment 
and the value obtained numerically. The conveefing stream function sati$tle$ the conditions of no 
slip and vorticity is not conveeted through the cylinder as it is in small Reynolds number Oseen 
theory. 

1. I N T R O D U C T I O N  

The problem of determining the steady streaming flow past a fixed circular cylinder is one 
of long standing interest in the theory of the two dimensional motion of an incompressible 
viscous liquid. It is well known that the Stokes approximation does not lead to a solution 
for the velocity field which converges to a uniform stream at infinity. The paradox of 
Stokes was rationalized by Oseen by taking into account the convection due to the uniform 
stream. The Oseen linearization of the equations of motion certainly leads to a solution 
for the velocity field which predicts correct behaviour at large distances but close to the 
cylinder vorticity is effectively transmitted through the cylinder by the uniform stream and 
although separation is predicted in a qualitative manner the value of the critical Reynolds 
number at which separation occurs is R * -  1.51 and is too low compared with experi- 
mental results of Taneda (1956). The numerical value of R* predicted by Underwood 
(1954) using a series truncation method is R* -- 2.88. The generalized series expansion of 
Skinner (1975) predict from three terms the value R* = 1. This again may be considered 
too low and it is noted that the quantity At = [ log(4/R)-y + ~]-t which occurs both in 
the Oseen solution and Skiuner's work is positive for very small R but is negative at R = 4. 
Since At must become infinite somewhere in the range 0 < R < 4 it is not surprising the 
value of R* is somewhat underestimated. 

Dorrepaal (1982) has considered the Burgers linearization and has determined a value 
of R* lying between the Oseen value and the value given by Skinner. It is noted that in 
Burger's flow the forced convection is produced by the potential flow past a cylinder and 
the resulting vorticity produced from the linearized equation is essentially convected 
around the cylinder since the no slip boundary condition is not satisfied by the forced 
convecting flow. 

In this paper a theoretical analysis is presented for streaming flow past a fixed circular 
cylinder when the Reynolds number assumes its critical value for separation at the rear 
stagnation point. The two dimensional equations of motion are first set in complex form 
and an auxiliary function whose Laplacian is proportional to the total head of pressure 
is introduced so that the Navier Stokes equation can be written as a complex system. The 
equations are linearized by introducing a general convecting stream function and it is 
possible to integrate the system from fourth order to second order. Further integration is 
possible for an equation related to the pressure field. Even though the flow equations have 
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been linearized it is a difficult problem to determine the flow field explicitly. However by 
applying inner and outer boundary conditions it is found that the vorticity on the 
boundary of the cylinder can be calculated. The conveeting stream function is chosen to 
model the flow at low Reynolds number. Unlike the Oseen and Burgers flow this 
conveeting stream function satisfies the inner and outer boundary conditions exactly and 
also contains some asymmetry so that separation can be predicted. With the knowledge 
of the boundary vorticity the major flow features can be discussed. First it is shown that 
separation occurs at a critical Reynolds number R* = 2.78 in good agreement with the 
results of Underwood (1969) and Taneda (1956). In a slighly modified theory using the 
results from small Reynolds number hydrodynamics the value of R* is found to be 2.72. 

2. T H E  E Q U A T I O N S  O F  M O T I O N  A N D  M E T H O D  O F  S O L U T I O N  

The Navier Stokes equations for steady incompressible flow are 

(q. V)q = - grad p + v V2q [1] 
P 

div q = 0 [2] 

where q is the fluid velocity, p the pressure, p the density and v the kinematic viscosity. 
For two dimensional flow the velocity may be written as 

q = u(x, y)?  + v(x,  y)j" [3] 

and introducing a stream function ¢(x, y)  by 

u = - ~ , , v  = ~ x  [41 

the equation of continuity (2) is satisfied. Equation[l] may now be written as 

- ¢'xto = - P~ - vo~  [5] 

- eyto = -- Py + vtox [6] 

where P is the total head of pressure defined by 

e = P.P_ + :tlql2 [7] 
P A 

and to is the vorticity 

~" = V12¢ = Cxx + ¢' y,. 

Introducing complex variables z, ~ defined by 

z = x  + i y , ~ = x - - i y  

the complex fluid velocity can be expressed as 

q = u + i v  =2i~k~ 

[8] 

[91 
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Figure 1. The streamlines for the convecting stream function/~ for ct > ~. 

Figure 2. The streamlines for the convecting stream function ~ for 0 < • < ½. 

and the vorticity to = 4 ~  where 

2 a_ 0 .0 3 0 i 0 [11] 

If ~b(x,y) is a real function defined by 

P = -vFi2~b = -4v~b,~ [12] 

and multiplying (6) by i and adding to [5], then [5] and [6] combine to yield 

y c ~  + iv~#z~ + ~ = 0. [13] 

Equation [13] admits one integration with respect to z and 

~b~ + i~b~ + l~b~  = h"(:/) [14] 

where the function h(:/) is arbitrary. Without loss of  generality ~b may be replaced by 
+/~(z) + h(~) and [14] may be replaced by the following equivalent form 

~b~ + i ~  + l~b~ -- 0. [15] 

Taking the complex conjugate of  [15] 

~= - i~ , ,  + l ~  2 = 0 [16] 

and elimination of ~b from [15] and [16] recovers the vorticity equation, viz. 

O(d/, 17,2~ ) = vF'~4~ • [17] 
O (x, y ) 
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The Stokes flow equation obtained by the limit v-~oo from (15) is 

~i~ + i0~ = 0 

and the general solution is 

[18] 

and [15] may be written as 

then 

1 107 

Now consider the identity 

and [25] becomes 

q~-~ + ( i  -- 1 0 ) 0 ~  = 0. [241 

Suppose 0 = ~ is an approximation to the convecting stream function then [24] may be 
linearized to give 

q~ee+ ( i  - - '  zv ) O. [25] 

1 O . # 
- - T v  t~- 

- - =  tk~_, . l_~{(i_f l  , +0f ie ]  10fl:~ 0. 

In "the last terra of [27] 0 is again replaced by fl and 

[231 

[26] 

[27] 

[28] 

dp + i0 = $f(z)  + g(z ) .  [191 

The Oseen linearization of the equations of motion can also be obtained from [15] and 
is of the form 

qb~ + i0~  - ikO~ = 0 [201 

where k is a constant related to the free stream velocity and the kinematic viscosity. It is 
observed that [20] can be integrated once to give 

qb~ + i0~ - ikO = f ( z ) .  [21] 

However, returning to the general equation [15] write 

1 0 2  [22] 
q~" = q~ +4v 
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Define X = ~ '  - 1/2v~, then 
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[29] 

One integration with respect to £ yields 

1 l f f~  _ 
x,+  + f(z). [301 

It is observed at this point that by making the one approximation ¢/being replaced by 
/ / i t  is possible to integrate the equations of motion from fourth order to second order. 
To make further progress differentiate [30] partially with respect to z. This gives 

1 l b , .  101"  
Xa + id/ a + -~fli~b, + -~ fl " = ~v ~z J flfl,e d z  + i f ( z ) .  [311 

Taking the real and imaginary parts of this equation 

1 2 

'°I, 
=2v(gz #,,d~+ /~,, dz +f ' ( z )  + : ( e )  [32] 

and 

1 (9 /" , , d i - ~  
2iq/,e+l(~b,//,-//,~b,) = 2--~z ? /J - -  _ fl3/J,, dz + f ' ( z  ) - f ' ( f ) .  (33] 

It is not possible to approximate [33] satisfactorily without leading to the Stokes Paradox 
but in [32] ~k will be replaced by ~/throughout so that 

v 1(9 1(9 

and integration yields 

t . ,  

Differentiating partially with respect to 

2 1 _ 1(9 
[36] 

Consider now the specific problem of streaming flow past a fixed circular cylinder. If the 
cross-section of the cylinder is typified by Izl = a and free stream speed is U it is appropriate 
to introduce nondimensional quantities by 

Ua 
z = az' ,  d / =  Uad/", Z = Uaz' ,  fl = Ua~',  R = ~ [37] 

v 

where the Reynolds number is based on the radius a. 
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Substitution of  [37] and dropping primes it is found that the nondimensional forms of  

and 

so that from [38] 

The inner boundary condition on the cylinder requires 

~, = ~ = 0 at Iz I = 1 [43] 

Z~..~2~fl~d~ + f(z) on [zl--1. [44] 

Elimination of  X~ from (30) and (42) yields 

The outer boundary condition requires 

1 i z l_ ,o  ° [46] ~0 ~ r sin 0 = ~i(~ -- z) as 

or equivalently in terms of  ~ from [34] 

~,i ,-, constants as H ~ o o .  [47] 

Thus f(z),,, B z -  A/2 log z as tzl~oo where A and B are real constants and the inner 
boundary condition [45] is satisfied by taking ~ ' ( i )  ~ + A/2 log ~ + A/2 i  2 as [z[~ oo. Once 
fl is known the complete func t ionsfand  g can be determined on the basis that the vorticity 
decays to zero at infinity. Desirable features of  the convecting stream function/~ are that 
both inner and outer boundary conditions are satified, that is 

/~ = ~ r  = 0 a t r  = 1 , z  = r e~and 

/~ ,-, r sin 0 as r--* oo. [48] 

[30], [321, [33], [34], [36] are 

ze + i /e + RC, faa,, + f(z). [38] 

1 of# _ Rol, 2Xze+R(/3~z+/J~q&)+2Rq//J~e=~R~z ]/~edz +20-d  /J,...dz + f ' ( z ) + f ' ( f ) .  [39] 

R d  _ 1 0 2,¢,,,+ R(C,,a,-a,C,,)=~yz faa,,de.-~R-~ fa#,,dz +f'(z)-:'(:.). [401 

2x~+ZR(~.B~+B~.~)=gR N B~,dz+~R~ #~.dz+f'(z)+f'(e). [411 
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Consider the following form for fl 

(r 2 -- 1) 2 sin 0 o~(r 2 -- 1) 2 sin 20 
fl = r3 t r4 [49] 

where ~ is a constant. The expression fl satisfies the inner and outer boundary conditions 
and the vorticity on r = 1 derived from [49] is 

V12fl I, = I = 8 sin 0 + 8~t sin 20 

= 8 sin 0(1 + 2~ cos 0). (50) 

The flow described by fl admits separation when 0c > ½, separation first occurring when 
0 = rr and at • = l. For the purpose of calculating the integrals it is convenient to write 

fl = /30 + /31 [511 

where 

fl0 = (r2 -- 1)2 sin 0, ~(r 2 -- 1) 2 sin 20 
r 3 " fll = r 4 [52] 

In terms of z and ~,/30, fll may be expressed as 

,{ 2 2 , 1} 
/3o=~ z - e - - + - a  [53] z z z~ 2 z2~ 

and 

0 t { z  ~ 2 2 1 1 }  
/31 = ~ 7 Z e 2 ~" ~ "Jr" Z~ 3 ~ 3  " [54] 

Also the second derivatives are given by 

,{, o 2}  
O~ 2 z£ 4 z2~ ~ • [55] 

02/31 • 52z 12 12 2 
OF = ~ [ ~  ~4 + z~5 ~3z3j. [56] 

Now the integral 

~/3 fR 02/30 Ifl002/31 - I f l  02/30 - ' ~° 02/31 a -  /3,,d~= j~o~-d~ + ~-d~ + ,~-d~.  jp,-~.-~-Qz [57] 

and 

02/3o _ 2 1 8 2 f,o-~ ~, = -~{-~_(, + ~)+ ~= +~+D 
20 2 \  1/4 2% 6 1 

[58] 

MF VoL I0, No. 2 ~  



166 K..s. RANGER 

02fll fl~z2d~ = ~ 2 f l /  2 \  1 {8 

6 ~ z~ ~ -  -4z+;)-~3~-~)*z~,  12,} 
7 Z2Z 7 " 

[59] 

n 02ill  . -  1 fpo --~-oz ~ t f l / 2  \ 1 // 2 

3 ~ _ 1 6 z  38 4 2 ) ~  36 2)l_. .Lf36 12) 2 } 

[6o1 

;fl O2flo_ ~" I (4  

3•_•3 _4z 16 2 + 2 + - - - - z  ~ ) - - 4 ~ - ~  ~ 14 6 + 4  Z 3 Z-4 ~_~) 1 /16 
- - + 5~--~T 

2) ,} 
+ ~  - ~ .  

[61] 

It follows from [57] that 

ffl l f l /  4 2 2 2¢Z2 4~ ? )  

)2_~ 8 2 8u2 2~t2 8o~ 4o~) 
+ 2Z + -  + Z--3-- - -  + ~ - -  ~Z2 -- 8~, + .~- + • ~ 

Z Z Z 5 

20 2 2 40u2 2u2 20uz 
14-t"~-+z'2+z-4-t '2~2z2- z --T--t- z 6 - 1 

1/4 2 2 10~2 
-~-~z +~+4~ z z3 

1 6 
+ 5 ~ 5  - - ~ - - 3 8 ~ 2 + ~ 4 2 +  

13~t -- 10ct + 2~t~ 
Z 2 Z 4 ] 

140~ 1___~6~ 2 52u + "-~-} + ;?'k z 
Z 

40or 20ct  4ct) 
z- +-y-+~ 

3£~__ 12~2"[ 
z2 } 7~Tz2j [62] 

and the related integral 

~fdz~flfl=dz=-~{log / '4 8u 2 12~ 

( 8 6 10~ 2 
- 2 .~2 ~2 ;76 2~.~ 

40 8 4~2~5 8~ 2 + ~3 ;?5 -I- + 4a2- ~ + ~- 

20u'~ I_L/' 4 6 - 2 30~2 
"~-g]-3z3~, ;?2 ;?4 t-4~ +---~--I ;73 

2~_~z4 1__2 5&z 2 52~ 42£~ l_L/'6ot 

16~ ~ 
;73 ~5 ] 

120t 2 40~ 
2Oct + -  ;?7 ;72 

20~ 8~ / 

6~ 4 ~  

60~ 
;?4 

[63] 
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From [62] and [63] it is found that 

_ 202~t~ 

7 2~ + e3i0(4i0 10 6'X 
_ 

22,t2 _ 3~ 4io • + --~-- e +e  (12~,0 + 13~ - - ~ )  

+ e51O(8tx 2 i 0 _  -- 2,t 2 + __~__ + _.~.__ + _ . . ~ ) 2 t x 2  38tx2 12°t 2'~ 

21~t 20 ] + 2aiO - -  6at + - ~  + - ~  ~. [ 6 4 ]  

Involing the inner boundary condition [45] on Iz[ = 1 it is found that suitable forms for 
f(z) and g'(z) are expressed by 

A A al a2 a3 a4 a5 ~'(i) = +-~log z + ~--~+ 7 + ~ +  ~ + ~ +  ~ + a 

c2 log ~ log ~ log :? cslog :~ 
+ ~ + c 3 - ~  + c4 f---V" + :75 [65] 

and 

A + ~  ~ b3 f(z)=Bz-'~logz z + + ~ + b o l o g z .  [66] 

The coefficients in [65] and [66] are found to be 

a = + - i - i f +  [67] 

at=  4-2ct2),a2 8 \  15 22~c +-~- [681 

Rfl0 3R 
a3 = 8-'~'~ +-~ ) +-- ~ [69] 

R 
a4=~--(13at-~)  7aR20 [70] 

2 22  38a2 12't2~ 33ct2R [71] 
05= -2ct +~ot + - - ~ - +  147/ 140 

aR aR 
bo = - -~-  c2 = --~-- [721 

3R R 
bl = ' ~  %= 2 [73] 
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70oR 3~R 
b2 = 40 c4 - 2 [74] 

1 l~2R 2~t2R 
b3 = 140 c5 = 2 [75] 

It is noted that the constants A and B are as yet undetermined. A will be determined at 
a later stage but it is unnecessary to determine B for the vorticity on the boundary. 

The vorticity on the cylinder Izl = 1 is from [40] expressed by 

coi=4id/a---R~--~fflflf~dY.-R~f~fl,,dz+ 2f'(z)--2f'(~,) [76] 

where the integrals are evaluated at z = e ~. On calculation it is found that 

13uR . 13R . R~ 2 
to = ~ sm 0 + ~ sm 20 -- uR sin 30 + ~ sin 40 + 2A sin 0. [77] 

To determine the constant A it is noted that 09 = 0 = Vt2fl at 0 -- 0 and 0 = ~, and it is 
natural to identify o~ and Vz2fl at a point midway between the forward and rear stagnation 
points, that is 0 = +__n/2. It then follows from (50) and (77) 

13~R 
2 A + ~ R +  15 = 8  [78] 

and to can now be written as 

13R Roc 2 
= (8 - ~ R )  sin 0 + - ~ -  sin 20 - ~R sin 30 + ~ sin(40).  [79] 

Now the convecting stream function fl first exhibits separation at the rear stagnation point 
of the cylinder when • = 1 and the critical Reynolds number  R* is obtained from the 
equation 

I ( _ ~ )  13R* 3 . R - -  
&o = 0 = - 8 - + - - i T -  + ~ R *  -~ 105 [80] 

giving R* as 

420 
R* = - = 2.78. [81] 

151 

The photographic experiments o f  Taneda (1956) claim that twin vortices are not present 
at R - 3 but  are observed at R -- 3.5. Since there is difficulty in observing separation near 
the critical Reynolds, Taneda concluded that R* = 2.5. The numerical valued based on 
series truncation given by Underwood (1969) is R* = 2.88. However  the theoretical value 
based on Oseen theory for small R is R* = 1.51 (Yamada 1954) and the value derived from 
the three term inner expansion, again for small R, is R* = 1 (Skinner 1975). 

For  values of  R > R*, the convecting vorticity V12fll,=l vanishes at 0 = ~ and 0 = 00, 

~/2 < 00 -< n where 

1 1 
c o s  Oo = - ~ ,  ~ _> ~. [821 
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Now if the vorticity to also vanishes at 0 = 00, then from [79] it follows that 0t can be 
expressed as a function of R in the form 

105 f[-16 302R2-]1/2 - 4 } .  

The attachment angle 00 is now given as a function of R by 

[83] 

{I  302R2"]!/2_ }-l.  1 R 1 6 + ~ J  - 4  [84] 
cos00= 2 8 =  105 

Another possibility for choosing the coefficient A is to identify the term in sin 0 for the 
vorticity expression as the leading coefficient in the vorticity derived from the Stokes inner 
expansion for small Reynolds number. The reason for this is that the drag coefficient is 
derived entirely from the term in sin'0. Now the vorticity calculated from the leading term 
in the inner expansion is (see van Dyke 1975, p. 161) 

1 [85] 
co ~ 2A1, A1 = log 4 - log R - 7 + ½ 

where 7 is Euler's constant. Thus the coefficient A is given by 

2 13~R 
2A = [86] 

log4--  log R --), +½ 15 

and the boundary vorticity is now expressed by 

2 13R ~2R . 
co = [log 4 - log R - y + ~] sin 0 + ~ sin 20 -- ctR sin 30 + ~ sm 40. [87] 

The critical Reynolds number R* at which separation first takes place is determined from 
the equation 

420 1 
log 4 - log R* -- 7, + ½ = 49---~ R---- ~. [88] 

The numerical value of R* obtained from this equation is R* -- 2.72, which is in good 
agreement with the work of Taneda and Underwood. In the linearized theory presented 
in this paper vorticity is not convected through the boundary as it is in the. Oseen 
approximation and this produces a more realistic value of R*, more in line with the 
experimental and numerical values. Since the drag coefficient essentially depends on A it 
follows that for very small R the drag coefficient will be the same as in the Oseen 
approximation. Since only the approximate boundary vorticity is known it is not possible 
to calculate the eddy length for R > R*. This requires a knowledge of the global velocity 
field which is beyond the scope of the present analysis. It is possible to calculate the 
vorticity derivative on the boundary [z I= 1 and this is expressed by 

_ 5Ri . ~tRi i 17~tR15 sin 0 - ~ sm 20 - ~ sin 30 

+ R i ( ~ 5 - 4 - 4 ) o t 2 s i n 4 0 -  (8 - - ~ - ) i  sin 0. [89] 
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Again the drag per unit length of  cylinder can be calculated with the knowledge of  the 
boundary vorticity and vorticity derivative. However, the convecting vorticity and its 
derivative do not agree with the corresponding values of the voriticity and vorticity 
derivative derived from [50] and [79] except at the forward and rear stagnation points. An 
accurate expression for the drag coefficient is therefore not possible without employing a 
more sophisticated form for fl involving terms in sin 20, sin 30 and sin 40. Hence this is 
omitted from the present paper. 

On the other hand it is noted that at the rear stagnation point r = 1, 0 = 7r 

= a--;  = o [9o1 

Also at R = R* 

a 2 ~ 2 
v?B = = o, B = ¢J = o. 

7,2/~ = ~01712~ = 0. 

[91] 

[92] 

Hence at R = R*, ~ and fl agree up to derivatives of  third order at the rear stagnation 
and the value of R* may be expected to be reasonably accurate. 

Ideally the convecting vorticity on r = 1, should agree identically with the derived 
vorticity co = V12~, on r = 1. This is not possible unless fl is a solution of the Navier Stokes 
equations. To improve the approximation fl may  be expanded in the form 

fl (r2-- 1)2 sin 0 + ~ (r2-- 1)2 
-~- r 3  Otm " r m ' +  2 ' sin toO. 

m ffi 2 

[93] 

This will lead to an expansion for the boundary vorticity co in the form 

2n 

co = V,2~k = ~ am sin mO [94] 
mffil  

where the coefficients a m depend on ~,, m = 1, n and R. Now the vorticity on r = l, derived 
from [93] is 

Vi2fl = 8 sin O + 8 ~ a, sin toO. [95] 
m ~ 2  

The coefficients 0t,,, m = 1 , . . .  ,n are now determined by a,~ = 8 ~ ,  m = 2 . . . . .  n, a~ = 8. 
However, the calculations of  the integrals involving fl and its derivatives are tedious and 
cumbersome and from a practical point of  view it may not be possible to proceed higher 
t h a n n = 3 o r 4 .  

Finally, it has been assumed that the vorticity decays to zero at infinity. If  [25] is 
differentiated twice with respect to z, it is found that 

) 1 _,= 

and taking the imaginary part 

[96] 

[9"7] 



CRITICAL SEPARATION REYNOLDS NUMBER 171 

Since [3 ,,-? = -½i(z - ~ )  as r--*ov, it follows that the vorticity at large distances satisfies 
the equation 

( l )  Im icozi + ~vvio~ = 0 

as Izl  and o~ = 4~,a. This is an Oseen type of equation and it follows that the vorticity 
decays exponentially at infinity. 
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